

Pigmente und Farbstoffe für Kerzen

Wirkung von Farbe

Die Farbe einer Kerze zieht den Verbraucher an!

Wirkung von Farbe

Farben beeinflussen die Kaufentscheidung des Konsumenten!

Was ist Farbe?

Die Farbe eines Objekts ist das Licht, das reflektiert wird.

Was ist Licht?

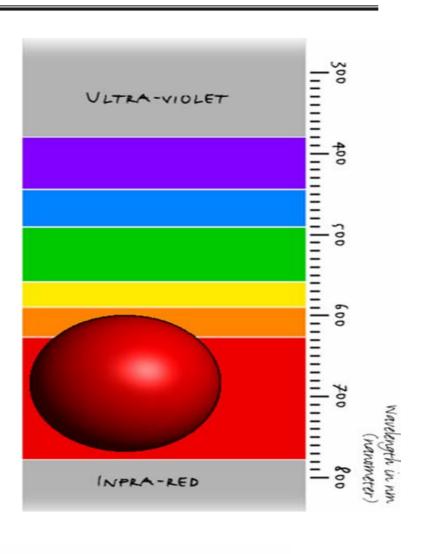
Licht ist der sichtbare Teil des elektromagnetischen Spektrums.

Elektromagnetische Wellen

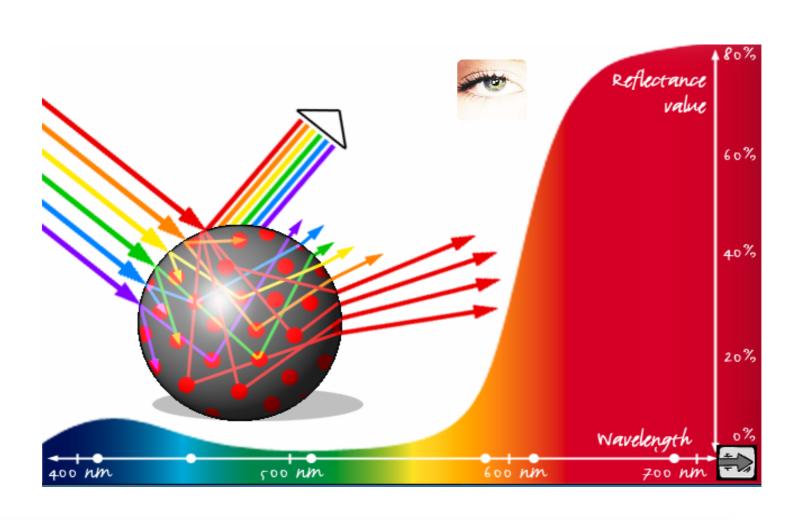
UV 300 - 380 nm

Violett 380 - 450 nm

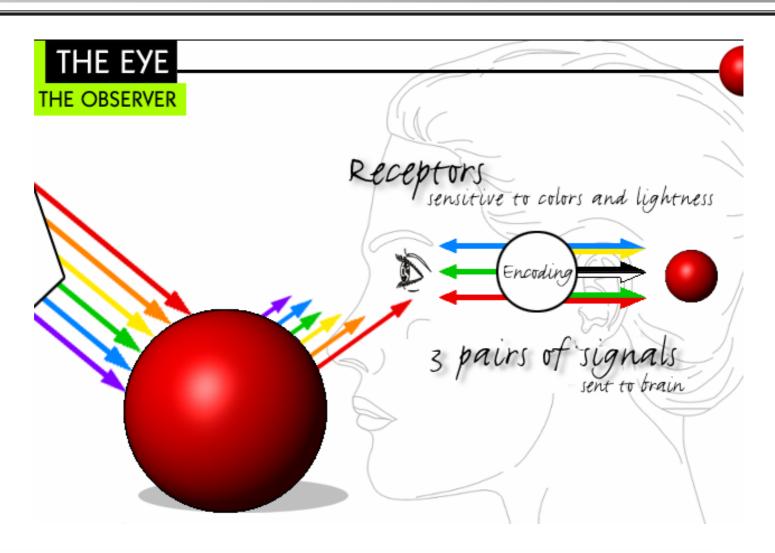
Blau 450 - 490 nm


Grün 490 - 560 nm

Gelb 560 - 590 nm


Orange 590 - 630 nm

Rot 630 - 780 nm


Infrarot 780

Reflektion - Absorbtion

Farbe – Interpretation des Gehirns

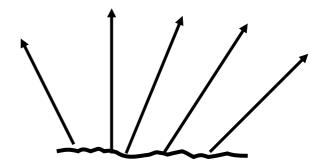
Opak - Transparent

Dieselbe Farbe erscheint je nach Opazität des Wachses unterschiedlich!

Additive, Iso- und N-Paraffine

- Additive wie Polymere, Mikrowachs oder Stearin ändern die kristalline Struktur eines Paraffins und erhöhen seine Opazität.
- Iso-Paraffine haben eine hohe Opazität.
- Normal-Paraffine sind transparent.

Glänzend - Matt

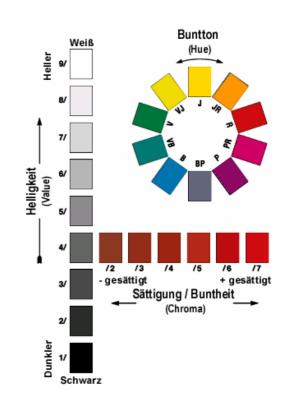

Licht wird in 1 Richtung reflektiert

Licht wird gestreut

Ebene Fläche

• glänzende Erscheinung

Unebene Fläche


matte Erscheinung

Farbbewertung

Farbton/-stärke

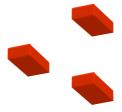
Sättigung

Farbreinheit

Farbherstellung

Additive

Produktionsprozeß


Kerzenfarben

Farbtypen

- Pigmente
 - organisch
 - anorganisch
- Farbstoffe (fettlöslich)
- Farbstoff-Pigment-Mischung

Was sind Pigmente?

Pigmente sind kleinste Farbpartikel, die nicht in Wachs löslich sind. Sie färben das Wachs durch Dispergieren.

•

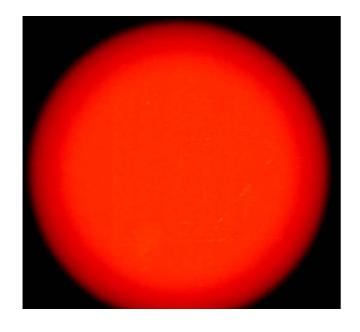
Was sind Pigmente?

- Pigmente sind synthetischorganische Substanzen.
- Die Teilchengröße der Pigmente ist maßgeblich für die Qualität einer Pigmentfarbe.

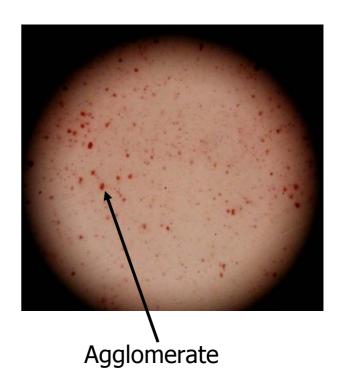
Pigmentpartikel

Primärteilchen

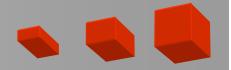
Aggregate

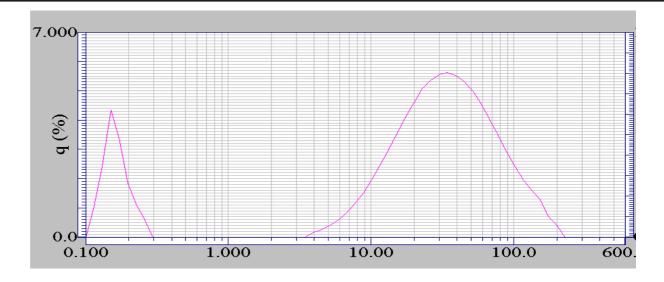


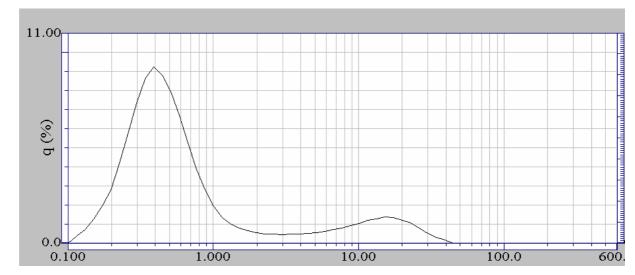
Agglomerate

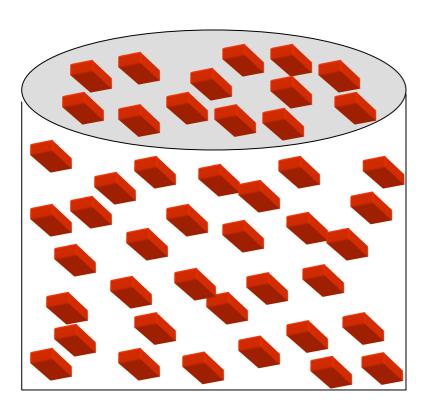


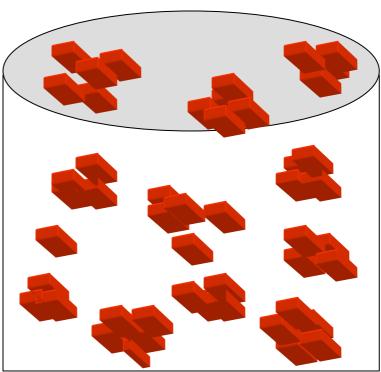
Pigmentteilchen unter dem Mikroskop


Bekro Pigment


Pulver Pigment

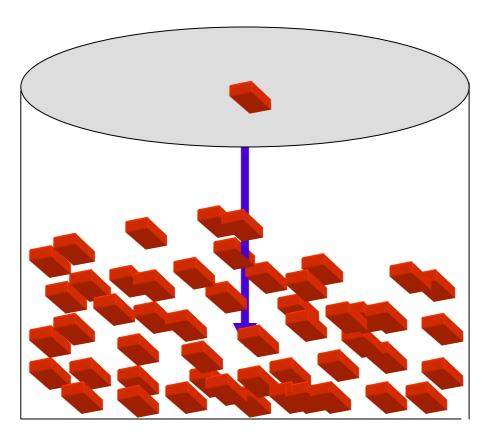

Teilchengröße


Pulver *35.7* μm



Bekro Muster 2.4 µm

Dispergieren von Pigmenten



Mixer für Dispersion

Absetzen von Farbteilchen

Einsatz von Pigmenten

Zum Übertauchen von Kerzen ausschließlich Pigmente verwenden!

Zusätzliche UV-Stabilisatoren werden nicht benötigt!

Einsatz von Pigmenten

- Es ist gelegentlich möglich Pigmente zum Durchfärben zu verwenden.
 - Bei hellen Farbtönen
 - Um die Lichtstabilität von Farbstoffen zu verbessern
 - Bei Zusatz von Duftstoffen
 - Für Stearinkerzen

Eigenschaften von Pigmenten

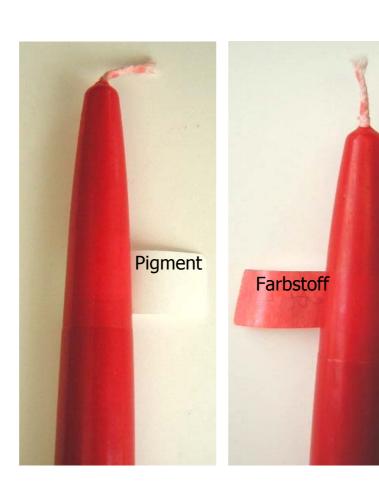
Vorteile:

- Sehr lichtecht
- Migrationsfrei
- Hitzestabil
- Verträglichkeit mit Duftstoffen
- Säureresistent

Nachteile:

- Brenneigenschaft
- Sedimentation

Lichtstabilität von Pigmenten


Übertauchen mit Pigmenten – **kein UV**

Übertauchen mit Farbstoffen

Migration: Pigment / Farbstoff

Hitzestabilität

Direkte – indirekte Beheizung

Hitzetest

Wachstyp

Pigment ist stabil bei 90° C nach 14 Tagen

Übertauchbehälter

Wir empfehlen Ubertauchbehälter mit indirekter Beheizung!

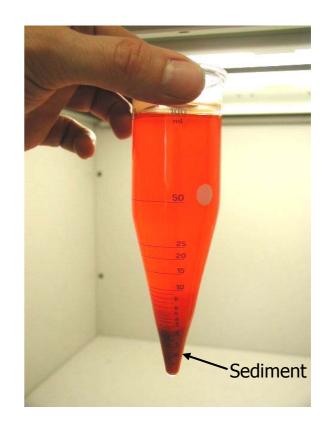
 Direkte Heizsysteme können leicht das Wachs, den Duftstoff und die Farben zerstören.

•

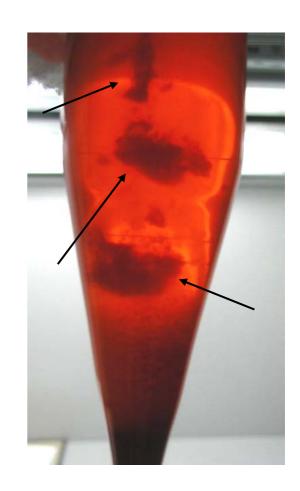
Pigmente + Duftstoff

 Pigmente können viele
 Stabilitätsprobleme in Verbindung mit Duftstoffen lösen

 Pigmente sind im Allgemeinen resistenter gegenüber Duftstoffen als Farbstoffe


Pigmente & pflanzliche Wachse

- Bekro Pigmente sind sehr stabil in Stearinkerzen im Hinblick auf
 - Lichtechtheit
 - Hitze


Sedimentation

- Tenside (Oberflächenspannung)
- Teilchengröße
- Viskosität des Wachses

Tauchmasse

Additive mit hohen Schmelzpunkten in der Tauchmasse können sich absetzen/separieren!

Brenneigenschaft

- Partikelgrößenverteilung der Pigmente
- ChemischeStrukturder Farben

Brenneigenschaft

Kein Tropfen

x Gramm Wachs/Stunde

Rußen

Flammenhöhe

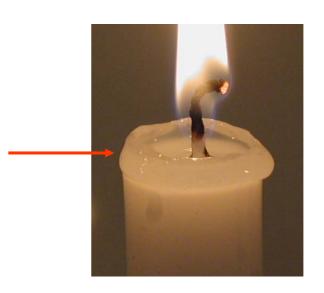
Brenneigenschaft

- Additive
 - Duftstoffe
 - PE mit hohen Schmelzpunkten

Reaktion zwischen Farbe und Duftstoff

Schmelzpunkt des Wachses

Brennvergleiche


Test: 5 Tafelkerzen, Durchmesser 22 mm, Brennzyklus: 2 Std. Brennen – 1Std. Pause, Temp. 26° C

Pigment Gelb - Pantone Gelb C		Farbstoff Gelb - Pantone Gelb C	
1. Brennen	6.57 Gramm/Std.	1. Brennen	6.63 Gramm/Std.
2. Brennen	6.66 Gramm/Std.	2. Brennen	6.73 Gramm/Std.
3. Brennen	6.62 Gramm/Std.	3. Brennen	6.97 Gramm/Std.

Resultat: Die Brennmenge eines geeigneten gelben Pigments ist ähnlich der eines Farbstoffs. Verschiedene Pigmente haben verschiedene Brennmengen pro Stunde.

Brenneigenschaft - Tauchmasse

Zu viel PE in Wachs zum Übertauchen -Brennrand ist zu hoch

Anorganische Pigmente

Was sind Farbstoffe?

 Farbstoffe sind in Wachs löslich. Die Löslichkeit kann je nach Wachs variieren.

Farbstoffe nur zum

Durchfärben

verwenden!

Eigenschaften von Farbstoffen

Vorteile:

Gute Brenneigenschaft

Nachteile:

- Migration
- Lichtstabilität
- Hitzestabilität
- Sensitiv gegenüber
 Duftstoffen und
 Stearinen

Flüssige Farbstoffe

Granulat

- Hohe Chargengleichheit
- Lichtecht
- Neutraler Geruch
- Leicht abzumessen
- Leicht zu handhaben
- Sicher für Arbeiter

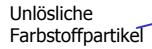
Flüssige Farbstoffe

- Chargenunterschiede
 u.a. bedingt durch
 Löslichkeit des
 Farbstoffs und
 Viskosität
- Geruch hängt von der löslichen Base ab
- Lösungsmittel oft krebserregend

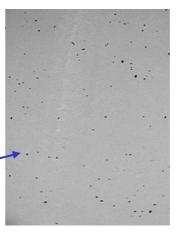
Pulverfarbstoffe

<u>Granulat</u>

- Hohe Chargengleichheit
- Lichtecht
- Neutraler Geruch
- Leicht abzumessen
- Leicht zu handhaben
- Sicher für Arbeiter


<u>Pulverfarbstoffe</u>

- GroßeChargenabweichungen
- Staubig & schmutzig
- Sehr stark und schwierig zu dosieren
- Schwierig in der Laborproduktion zu handhaben
- Enthalten keine stabilisierenden Zusätze


•

Löslichkeit von Farbstoffen

- Chemische Struktur der Farbstoffe
- Produktionsprozeß
- Additive
- Hitze

Migration

Die Migration eines Farbstoffes wird

bestimmt durch

- Den Farbstoff an sich
- Duftstoffe
- Wachs Öl
- Verpackungsmaterialien

Lichtstabilität

Stabilität des Farbstoffes an sich

Stabilisierende Additive

Produktionsprozeß

Farbstoff-Pigment-Mischungen

Farbstoff-Pigment-Mischungen verbinden die Vorteile von Farbstoffen und Pigmenten und lösen oft Stabilitätsprobleme im Bezug auf Reaktionen zwischen Farbstoffen und Duftstoffen.

Farbstoff-Pigment-Mischungen

Pigmente werden gelegentlich

gebraucht, um eine Farbe abzustimmen,

wenn ein

passender Farbstoff

nicht existiert.

Farbstoff-Pigment-Mischungen

- Stabilisieren von Mischungen
- Duftkerzen
- Stearin

Verblassungstest – nach 24 Stunden

Farben – Material - Technologie

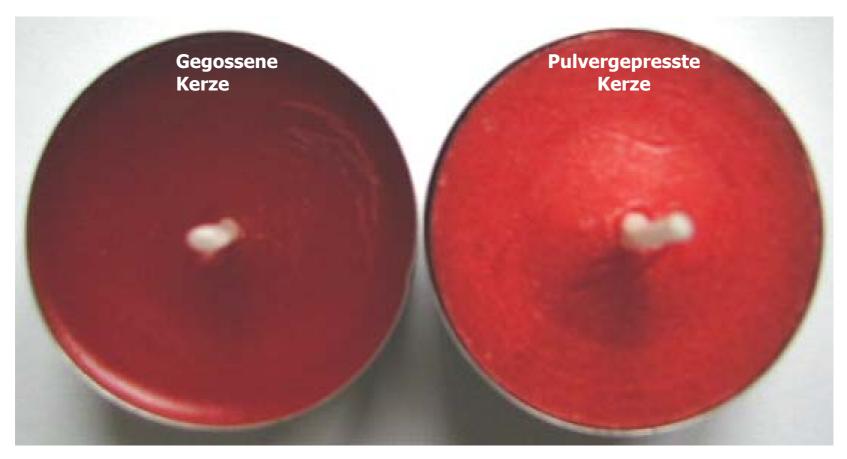
- Wachsmasse
 - opak
 - transparent

- Duftstoff
 - Seine Farbe
 - Reaktionen

Produktionsmethode

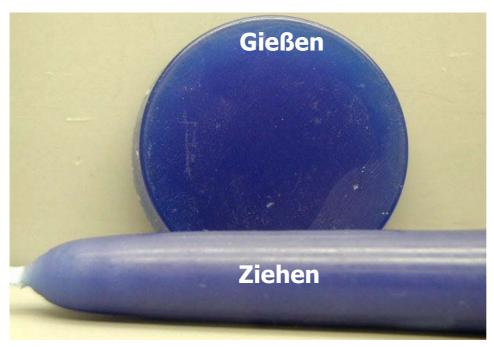
Hitze während der **Produktion**

Kühlungsprozeß


Lichtquelle

Farbe- Wachsmischung

Die selbe Farbe sieht unterschiedlich in einer anderen Wachsmischung aus.



Farbe - Produktionsmethode der Kerze

Dieselbe Farbe sieht bei unterschiedlichen Produktionsmethoden anders aus.

Farbe/Lichtstabilität - *Produktionsart*

Dieselbe Farbe kann in einer gegossene Kerze eine gute Lichtstabilität besitzen, bei einer gezogenen Kerze aber relativ schnell verblassen.

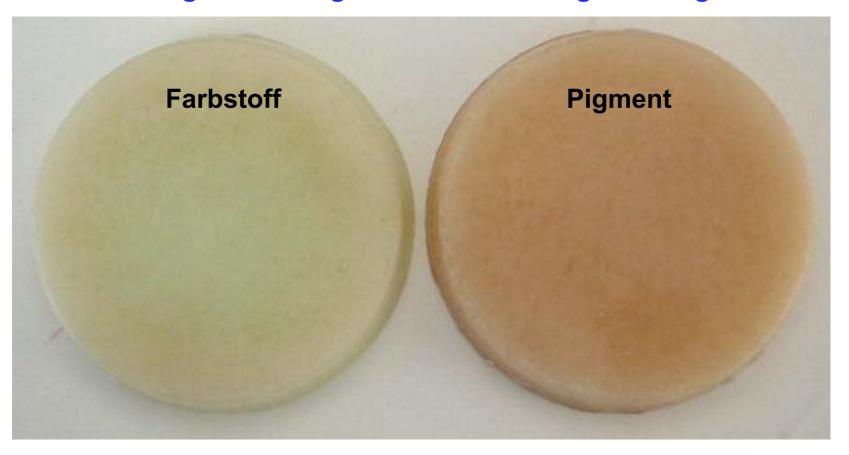
Verblassen und Wachs

Die gleiche Farbe hat ein gute Lichstabilität in Wachs A, aber verblasst in Wachs B.

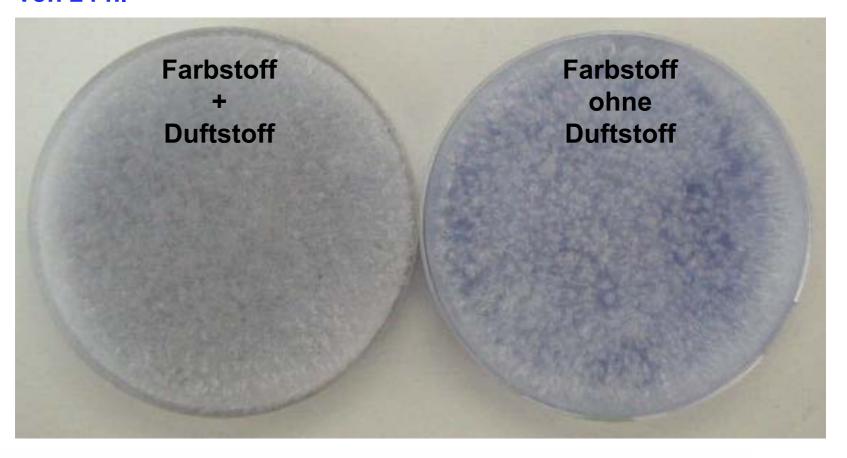
Reaktion - Farbstoff und Duft

Der Duftstoff reagiert mit der Farbe und hellt die Farbe auf. Die Farbdosierung mußte verdoppelt werden.

In diesem Fall kein Einfluß auf die Lichtbeständigkeit.


Reaktion - Farbstoff mit Duftstoff

Eine Farbe reagiert mit dem Duftstoff und verändert sich.


Reaktion - Farbstoff mit Duftstoff

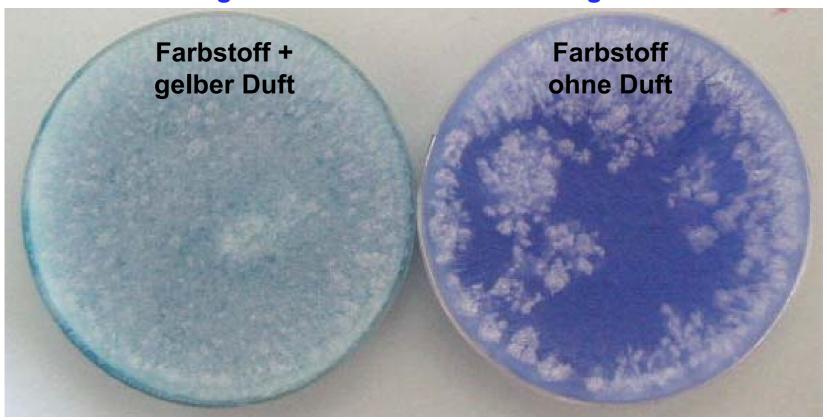
Der Duftstoff reagiert mit dem Farbstoff und der Farbstoff verfärbt sich grün. Ein Pigment war die einzige Lösung.

Reaktion - Farbstoff mit Duftstoff

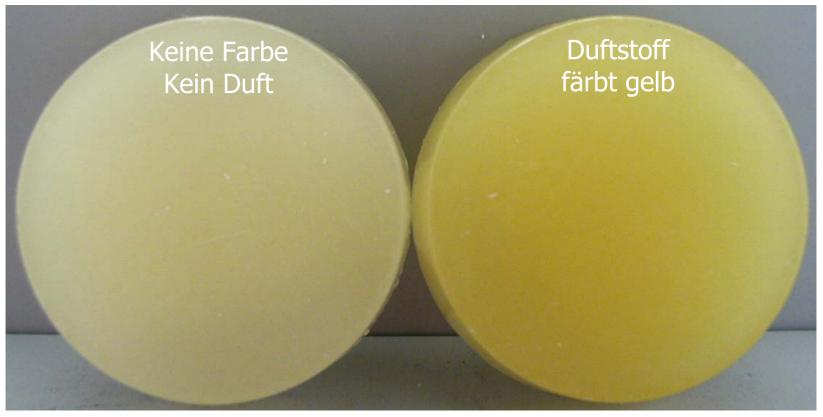
Der Duftstoff reagiert mit der Farbe und zerstört ihn innerhalb von 24 h.

Farbe von Duftstoffen

Der Duftstoff ist gefärbt und verhält sich so wie die Farbe selbst.

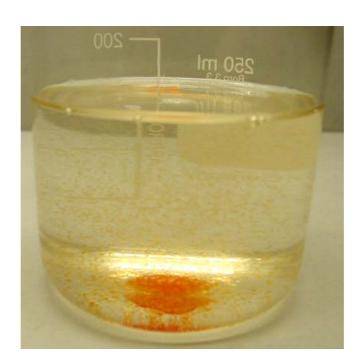

Farbe von Duftstoffen

Der Duftstoff ist gelb und verhält sich wie ein gelber Farbstoff.



Farbe von Duftstoffen

Der Duftstoff ist gelb und verhält sich wie ein gelber Farbstoff.


Gelbfärbung des Duftstoffes

Ein Duftstoff mit schlechter Lichtstabilität verfärbt gelb und die Farbe ändert sich aufgrund des Dufts.

Separation des Duftstoffes

Der Duftstoff färbt das Wachs und separiert.

Mischen von Farben

Mischung A

.12 % gelber Farbstoff

0.002 % rotes Pigment

Mischung B

.12 % gelber Farbstoff

0.002 % roter Farbstoff

Mischung A ist eine Farbstoff-Pigment-Mischung. Mischung B ist ein purer Farbstoff, der innerhalb eines Tages verblasst.

Farbüberprüfung

■ In einer Lichtkammer – 1500 Lux

Gleiche Lichtquelle

Hintergrundfarbe

Metamerie

Lichtquelle

D 65

D 50

A

• F11 - TL 84

Lichtkammer zur Farbprüfung

Metamerie

Farben verhalten sich "metamerisch", wenn sie unter bestimmten Lichtquellen übereinstimmen, unter anderen aber nicht.

Metamerie

 Farbe verändert sich unter unterschiedlichen Lichtquellen

Lichtquelle D 65

 Unterschiedliche Lichtquellen haben unterschiedliche Wellenlängen

Lichtquelle TL 84

Sicherheitsaspekte

Gelistet unter EINECS, TSCA

Schwermetallanteil gemäß **DIN EN 71,3**

RAL-GZ 041